Multiple sine functions and Selberg zeta functions
نویسندگان
چکیده
منابع مشابه
Hierarchy of the Selberg zeta functions
We introduce a Selberg type zeta function of two variables which interpolates several higher Selberg zeta functions. The analytic continuation, the functional equation and the determinant expression of this function via the Laplacian on a Riemann surface are obtained.
متن کاملSelberg zeta functions for spaces of higher rank
5 Introduction In 1956 A. Selberg introduced the zeta function Z(s) = c N ≥0 (1 − e −(s+N)l(c)), Re(s) >> 0, where the first product is taken over all primitive closed geodesics in a compact Riemannian surface of genus ≥ 2, equipped with the hyperbolic metric, and l(c) denotes the length of the geodesic c. Selberg proved that the product converges if the real part of s is large enough and that ...
متن کاملComputation of Selberg Zeta Functions on Hecke Triangle Groups
In this paper, a heuristic method to compute the Selberg zeta function for Hecke triangle groups, Gq is described. The algorithm is based on the transfer operator method and an overview of the relevant background is given.We give numerical support for the claim that the method works and can be used to compute the Selberg Zeta function on Gq to any desired precision. We also present some numeric...
متن کاملMultiple finite Riemann zeta functions
Observing a multiple version of the divisor function we introduce a new zeta function which we call a multiple finite Riemann zeta function. We utilize some q-series identity for proving the zeta function has an Euler product and then, describe the location of zeros. We study further multi-variable and multi-parameter versions of the multiple finite Riemann zeta functions and their infinite cou...
متن کاملOn Functions of Arakawa and Kaneko and Multiple Zeta Functions
We study for s ∈ N the functions ξk(s) = 1 Γ(s) R ∞ 0 t et−1 Lik(1−e )dt, and more generally ξk1,...,kr (s) = 1 Γ(s) R ∞ 0 t et−1 Lik1,...,kr (1 − e )dt, introduced by Arakawa and Kaneko [2] and relate them with (finite) multiple zeta functions, partially answering a question of [2]. In particular, we give an alternative proof of a result of Ohno [8].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1991
ISSN: 0386-2194
DOI: 10.3792/pjaa.67.61